Главная » Новости партнеров » ЛОГАРИФМИЧЕСКАЯ СПИРАЛЬ

ЛОГАРИФМИЧЕСКАЯ СПИРАЛЬ

Отношение любого числа последовательности к следую­щему приближается к 0,618 (после первых четырех чисел). Например: 1/1=1.00; 1/2=0,50; 2/3=0,67; 3/5=0,60; 5/8=0,625;

8/13=0,615; 13/21=0,619 и так далее. Обратите внимание, как значения соотношений колеблются вокруг величины 0,618, причем размах флуктуаций постепенно сужается; а также на величины: 1,00; 0,50; 0,67. Ниже мы расскажем о том, какой смысл они имеют для анализа соотношений и определения процентных уровней длины коррекции.

3. Отношение любого числа к предыдущему приблизи­тельно равно 1,618 (величина обратная 0,618). Например:

13/8=1,625; 21/13=1,615; 34/21=1,619. Чем выше числа, тем более они приближаются к величинам 0,618 и 1,618.

90926899 large dekor iz vetok cheremuhi 4 kopiya

4. Отношение любого числа к следующему за ним через одно приближается к 0,382, а к предшествующему через одно – к 2,618). Например: 13/34=0,382; 34/13=2,615.

Последовательность Фибоначчи содержит и другие любо­пытные соотношения, или коэффициенты, но те, которые мы только что привели – самые важные и известные. Как мы уже подчеркнули выше, на самом деле Фибоначчи не является первооткрывателем своей последовательности. Дело в том, что коэффициент 1,618 или 0,618 был известен еще древнегречес­ким и древнеегипетским математикам, которые называли его “золотым коэффициентом” или “золотым сечением”. Его следы мы находим в музыке, изобразительном искусстве, архитектуре и биологии. Греки использовали принцип “золотого сечения” при строительстве Парфенона, египтяне – Великой пирамиды в Гизе. Свойства “золотого коэффициента” были хорошо извес­тны Пифагору, Платону и Леонардо-да-Винчи.

Некоторые исследователи пытались найти следы последо­вательности Фибоначчи в совершенно неожиданных областях. Кто-то измерял среднюю высоту, на которой находится пупок у шестидесяти пяти женщин. Оказалось, что она составляет О, 618 от их общего роста (мы не знаем, мерил ли сей ученый высоту до низа или верха пупка, не говоря уже о том, как вообще можно было додуматься до такого исследования). Тем не менее, следует признать, что числа Фибоначчи встречаются повсюду – буквально в каждой области жизни человека.

ЛОГАРИФМИЧЕСКАЯ СПИРАЛЬ

В этой главе мы не собираемся подвергать исчерпывающе­му анализу такие понятия, как “золотые сечения”, “золотые прямоугольники” и “логарифмические спирали”, не говоря уже о математических основах теории волн и собственно числовой последовательности Фибоначчи. Тем не менее необходимо упомянуть о том, что на основе “золотого коэффи­циента” можно построить так называемую “логарифмичес­кую спираль”, каковая, как полагают, отчасти объясняет универсальный принцип роста, некий закон – общий для всей нашей вселенной. Считается, что спираль сохраняет постоянную форму, в каком бы виде она ни представала.