Если волна 3, ускоряя движение, вырывается за пределы верхней линии канала, то необходимо провести новые границы канала – через вершину волны 1 и основание волны 2 (см. рис. 13.32). Окончательно линии канала проводят под двумя корректирующими волнами – второй и четвертой – а также обычно над вершиной волны 3 (см. рис. 13.33). Если волна 3 необычно сильна (т. е. растянута), верхнюю линию можно провести над вершиной волны 1. Пятая волна перед своим завершением должна приблизиться вплотную к верхней границе канала. Когда строят канал для долгосрочных тенденций, то наряду с арифметическими рекомендуется использовать полулогарифмические графики.
ВОЛНА 4 В КАЧЕСТВЕ ОБЛАСТИ ПОДДЕРЖКИ
Завершая обсуждение моделей волн и других, связанных с этим понятий теории Эллиота, необходимо затронуть еще один важный момент – функцию волны 4 как области поддержки при последующем падении цен. После того как прошли пять волн восходящей тенденции, и рынок вступил в медвежью фазу, он обычно не опускается ниже предыдущей четвертой волны степенью ниже, то есть четвертой волны предыдущей восходящей тенденции. Обычно основание четвертой волны сдерживает падение цен, хотя у этого правила и есть исключения. Данная закономерность может оказаться очень полезной при определении максимального ценового ориентира медвежьего рынка.
ЧИСЛА ФИБОНАЧЧИ – МАТЕМАТИЧЕСКАЯ ОСНОВА ТЕОРИИ ВОЛН
Многие туристы, побывавшие в итальянском городе Пиза, обязательно приходят полюбоваться на знаменитую “падающую” башню, которую построил архитектор Бонанна. Башня действительно стоит под углом, то есть не перпендикулярно к земной поверхности. Что же общего у пизанской башни с рынком ценных бумаг, в целом, и теорией волн Эллиота, в частности? Почти ничего. Однако недалеко от башни находится небольшая статуя, на которую редко обращают внимание туристы. Речь идет о памятнике знаменитому итальянскому математику Леонардо Фибоначчи. Что общего между математиком, жившим в тринадцатом веке, с одной стороны, и теорией волн Эллиота и динамикой рынка ценных бумаг, с другой? Очень много общего. Как признал сам Эллиот в своем “Законе природы”, математической основой его теории стала последовательность чисел, которую открыл (или, чтобы быть точнее, вновь открыл) Фибоначчи в тринадцатом веке. В его честь открытую им последовательность стали называть “числами Фибоначчи”.
Фибоначчи опубликовал в свое время три большие работы, самая знаменитая из которых называется “Liber Abaci” (в переводе с латыни: “Книга вычислений”). Благодаря этой книге Европа узнала индо-арабскую систему чисел, которая позднее вытеснила традиционные для того вермени римские числа. Работы Фибоначчи имели огромное значение для последующего развития математики, физики, астрономии и техники. В “Libel Abaci” Фибоначчи приводит свою последовательность чисел как решение математической задачи -нахождение формулы размножения кроликов. Числовая последовательность такова: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 (далее до бесконечности).
Последовательность Фибоначчи имеет весьма любопытные особенности, не последняя из которых – почти постоянная взаимосвязь между числами.
1. Сумма любых двух соседних чисел равна следующему числу в последовательности. Например: 3+5=8, 5+8=13 и так далее.