Главная » Новости партнеров » Когда говорят об «искусственном интеллекте»

Когда говорят об «искусственном интеллекте»

Когда говорят об «искусственном интеллекте», имеют в виду так называемые эвристические программы, которые способны решать задачи — примерно так же, как это делает человек. Работу компьютера, решающего эвристическую за­дачу, в принципе можно назвать «разумной»: он оценивает условия, принимает решения и даже учится на своих ошиб­ках. Функция автоматического распознавания моделей поз­воляет машине учиться принимать решения и делать прогно­зы на основе классификаций различных объектов или инди­каторов. В данном случае значение слова «модель» отлично оттого, которое использовалось при описании «графических моделей». Цель автоматического распознавания моделей -получение синергетического эффекта путем одновременной оценки данных всех индикаторов (вместо того, чтобы рас­сматривать каждый из них по отдельности).

90926899 large dekor iz vetok cheremuhi 4 kopiya

Первым шагом в этом процессе является поиск лучшего индикатора из набора представленных. Затем необходимо найти лучшую связку инструментов (сначала два, а потом и три) — из тех, которые способны оптимально работать вместе. Процесс добавления новых индикаторов из числа оставших­ся продолжается до того момента, когда очередной добавлен­ный инструмент не дает улучшения работы всей системы в целом. В процессе тестирования используется два набора материала: так называемые данные научения и тестовый набор. Результаты, полученные на данных научения, должны быть затем подтверждены на отдельном тестовом материале. Метод раздельного материала нужен для того, чтобы избе­жать так называемого «подгадывания», которое, по утвер­ждениям противников технического анализа, часто исполь­зуется при тестировании других технических методов, осо­бенно их оптимизированных параметров.

Внедрение средств, функционирование которых основано на принципах «искусственного интеллекта» и автоматичес­кого распознавания моделей, может стать ответом на постав­ленный выше вопрос: как работать с огромным количеством часто противоречащих данных. В случае поступления проти­воречивой информации компьютеру дается команда просчи­тать все индикаторы и затем выбрать из них ту комбинацию, которая является оптимальной для данных условий.

Здесь возникает очередной вопрос: если все так просто, то почему такая система еще не разработана и не внедрена повсеместно? Пока исследования в этой области проводятся исключительно учеными, до прикладных программ дело еще не дошло. Автоматическая система такого рода стоила бы очень дорого, кроме того для ее эффективного функциониро­вания потребовались бы колоссальные вычислительные мощ­ности; ведь даже если какая-либо модель, проявившаяся на рынке, определена, ее необходимо постоянно подвергать повторным проверкам — в силу непостоянства рыночной динамики. И все-таки исследования в этом направлении продолжаются, причем одна группа исследователей продви­нулась достаточно далеко вперед. Это исследовательская фирма «Рейден рисерч груп», расположенная в Нью-Йорке.